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The reflection of light by planar stratified media: the groupoid 
of amplitudes and a phase ‘Thomas precession’ 

J M Vigoureux 
Laboratoire de Physique MolCculaire (UA 772 CNRS), UniversitC de Besanpn, 25030 
Besanson Cedex, France 

Received 31 March 1992 

Abstract. The reflection coefficient oflight on s t raaed planar structures can be obtained 
by postulating the use of a complex generalization of Einstein’s addition theorem for 
parallel velocities. 

The algebraic properties of the ‘composition law of amplitudes’ show that the set of 
all complex amplitudes of the electromagnetic field in heterostructures forms a weakly 
asjon’alir.e-commutariue groupoid. The fint concrete application of this abstract concept 
was found only in 1988 in special relativity. This work exhibits another example in a quite 
different field of physics. It also puts iDt0 evidence that the ’phase rotation‘ of light in 
stratified planar structures is to be considered as a ‘Thomas rotation’. 

1. Introduction 

The overall reflection coefficient of any number of isotropic media can be directly 
obtained, whatever may be the number of interfaces, by postulating the generalization 
in the complex plane of Einstein’s well known relativistic composition law of parallel 
velocities [l]. Noting R, and R, the complex (including phases) reflection coefficients 
of two interfaces, this composition law, which we denote 0, is defined by (the meaning 
of the overbar on R will be defined below) 

similar to the relativistic composition law 

The only difference between (1) and (2) lies in the fact that the Rj  in (1) are complex 
quantities whereas the velocities V,  in (2) are real quantities. 

As shown in [ 11, equation (1) provides a useful mathematical tool in the calculation 
of heterostructures. It also gives new insight into special relativity. The composition 
law of velocities does no more appear as a peculiar property of special relativity but 
as the expression, in the particular case of dynamics, of a more general ‘composition 
law’ of physics. 
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386 J M Vigoureux 

The physical meaning of the ‘composition law of amplitudes’ is quite similar to 
that of the ‘composition law of velocities’ in special relativity: 

As is well known, equation (2) shows that no matter what values we give 
to V, and V2, subject only to I Vll < c and I V21 < e, then the value of \Vzl 
cannot exceed the speed of light e. In the same way, no matter what values 
the reflection amplitudes RI and Rz (subject only to lRll < 1 and lRzl < I )  
have, the overall reflection coefficient B2 cannot exceed unity (the incident 
amplitude). 

Iterating the composition law of amplitudes (1) directly leads to the overall reflection 
coefficient of a system made with any number of interfaces [I]. However, as underlined 
in that previous work, the composition law of amplitudes, in the complex plane, is: 

( a )  neither associative (for example, the expression for the overall reflection 
coe5cient is ?7in = (RIO( R 2 0  (R,O (. . .OR,)))) and by no means ((((RIO R z ) 8  RJO 
. ..)OR,); 

(6) nor commutative (in general ( R , O R Z )  and ( R 2 0 R l )  have different phases 
although their magnitude are the same). 

In order to simplify calculations, which could be rather difficult because of this, 
our aim is to study the underlying algebraic formalism of the composition law of 
amplitudes (1). We show that the set of all the possible complex amplitudes of light 
in stratified planar structures form a weakly associative-commutative groupoid with the 
operation 8. These grouplike properties of amplitudes are quite similar to that of the 
relativistic admissible velocities which have been studied by Ungar [2-61, who suggested 
that such a groupoid be called a gyrogroup. We refer to his notation and proceed as 
he did. 

We show that the non-commutativity and the non-associativity of the composition 
law of amplitudes result from the presence, in the expression of R,, of a phase term 
which exactly plays the part of the Thomas precession in special relativity. Because 
of this, we consider the ‘phase rotation’ which appears in calculations of multilayers 
as a ‘Thomas phase rotation’ (or precession). Let us note that the Thomas rotation, 
which is generally studied as an isolated result in special relativity, appears here as a 
more general notion than we are used to. 

It is to be noted that, although discovered in 1965 by Karzel 171, who named it a 
K loop, the first concrete example of weakly associative-commutative groupoid was 
only discovered in 1988 by Ungar [8] in his study on the parametrization of the Lorentz 
transformation group. Our present result provides another concrete example of a 
gyrogroup in a quite different field of physics. 

2. The use of Einstein’s addition law of parallel velocities in studies of reflection by 
stratified planar strnctures 

Let us consider a planar stratified medium made of n planar parallel interfaces. Using 
(1) and noting Rj = RjJ+l ,  the complex (including phases) reflection coefficient of the 
interface between the two media nj and n,,, , the overall reflection coefficient of the 
total structure can be written [l] as 



Refection of light by planar stratified media 387 

(For clarity the complete notation B(Gj*,..nl, specifying inside the subscript the serial 
number of each interface, will be used only when necessary.) 

In (1) and (3) R,= R,,i+l is defined by 

(4) R . = R . .  , - exp[-2i(pl+P~+...+pj)1 

a..%,+,=~,i+lexp[+2i(pI+pZ+ . . . + p j  )I. ( 5 )  

Let us emphasize that the bar on R denotes the change of p, into -pi in (4) and 
(5). This operation corresponds to taking the complex conjugate of R, only in the case 
when t j j + ]  is real. 

& corresponds (figure 1) to the reflection coefficient of the wave on the ( j ,  j +  1) 
interface; q,i+l is the Fresnel reflection coefficient of that interface (for simplicity, the 
appropriate subscripts p and s corresponding to the polarization of light have been 
dropped from all equations); the phaseshift pi corresponds to the effect of propagation 
of the Beld through the same homogeneous layer of index of refraction ni between the 
two interfaces located at z,-] and zi = z,-] + d, 

(6) 

0, is the angle between the direction of propagation of the wave in the layer n, and 
the perpendicular to its boundaries (the z-axis). The meaning of q, is obvious from 
( 6 )  and corresponds to the z-component of the wavevector normal to the interface, in 
the corresponding medium. 

27r p =-njcosOj ( . ; . - ~ ~ - ~ ) = q j d j .  
' A  

Let us note, that, using equation (l), equation (3) can also be written 

We emphasize that, in the above equation, RI corresponds to the reflection coefficient 
of the wave on the first interface and that 92~2.3.....n) corresponds to the overall resection 
coefficient of a planar stratified structure made with interfaces, 2,3,  . . . , n. 

For clarity, let us illustrate the use of (3) (or (7)) by giving some examples. In the 
case of two interfaces, equation (1) directly leads to 

2 .  
1 I .  *a 2 1  1-1 

Flgure 1. Illustration of notation in the case of n parallel planar surfaces. 
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which, using (4) and (5) gives the well known result 

In the case of three interfaces 3, can be written in the same way 

R~ + R~ + R,+ R,R,  R, 
1+R1R2+ l?,R3+R2R3 %l,2 ,3)  @ 3  = 

which, together with (4) and (5) leads to the usual expression [9] 

In the same way 

B4 = (12) 
R,+ R,+ R , + R , + R , R ~ R , + R ~ R ~ % + R , R , R ~ + R ~ R ~ R ~  

1 i R,R2 + RI R, + RI%+ R2R,+ E2&+ l?,R,+ RlR2R,R,' 
Note that although never considered (as far as I know) in the literature, equations (3), 
(10) and (12) are also valid in special relativity. Einstein's additional theorem for n, 3 
or 4 parallel velocities 5 can be shown [ I ]  to be given by equations (3), (10) and (12) 
respectively after having changed Ri into V,. 

Note that the expression (3) of $3" for any value of n can be expressed in a 
polynomial form [ 101 by introducing a complex generalization ofthe so-called 'elemen- 
tary symmetric functions' of the mathematical theory of polynomials [ l l ,  121. 

3. Algebraic properties of the composition law of amplitudes 

In special relativity, the observer KO can only measure the velocity V ,  of K ,  (relative 
to him, K,,) and that V2 of K2 (relative to him, KO). Since he is not in the inertial 
frame K , ,  he cannot measure the velocity V2 of Kz  (relative to Kl).  The only way for 
observer KO to express the velocity V, of K 2 ,  relative to observer K ,  from that observer's 
own knowledge of VI and Yr2, is not by the usual addition law, but by the composition 
law ( 2 ) .  

In optics let us consider three successive media. An observer KO ('immersed' in a 
medium defined by its refractive index n,) can measure the reflection coefficient R ,  = 
(relative to his own medium n , )  of light on the interface (1,2). He can also measure 
the overall reflection coefficient B2 = (also relative to his own medium n , )  of the 
total structure n,-n2-n,. Not being in the medium n2 himself, he cannot measure the 
reflection coefficient R2= R2z of light propagating in the medium n2 and falling on 
the interface n2-n3.  The only way for him to deduce R2= R2,) (relative to an observer 
K ,  inside the medium n2) from that observer's knowledge of RI and B2, is not by the 
usual addition, but by the composition law (1). We thus have 

which can be written in the more compact form 

3 2 = R I ~ R 2  + R2=(-Rl)oBe,. (14) 
The knowledge of Rz can thus be obtained from that of 9tz and R,. 
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In the case of three interfaces we have in the same way, using ( 3 )  

%e,= R i O ( R z O R 3 )  = RiO%{z,, ,  * a(2.3) (R2OR3) =(-R1)0%3 (15) 

so that, we can easily deduce the knowledge of from that of R, and Ye3= R(,,,,,,. 
However, in this example, the problem of calculating from a knowledge of 
R 3 -  R3,+ and of Ye3= %(l.2~3) would not be straightforward. It would suppose, in fact, 
that we express Ye, with respect to ( R l o R 2 )  and R,  instead of expressing it with respect 
to R I  and ( R , 0 R 3 )  as in ( 1 5 ) .  This is not obvious because of the non-associativity of 
the composition law ( I ) ,  which can easily be seen from the two results 

R ,  + R ~ + R , + R , R , R ,  
1 + RIE1  + R l R 3 +  R2R3‘ (Rro  e W , 1 , 2 , 0  R3 = 

In order to show how to solve equation (15) for Ye(l,2J, our aim is to study algebraic 
properties of the composition law ( 1 ) .  This will lead us to define the gyrogroup of 
complex amplitudes in stratified planar structures. Let us note that this part explicitly 
refers to Ungar’s paper [6]. 

( a )  The composition law of amplitudes is a weak-commutative law. Let us write 
( 1 )  in the form 

so that, noting 

this result expresses the weak commutative property of the composition law of ampli- 
tudes. 

Although distinct, the composite amplitudes ( R I O R 2 )  and ( R 2 0 R , )  have the same 
magnitude, so that there exist a ‘phase rotation’ [ R I R 2 ]  taking ( R 2 0 R l )  onto ( R I O R , ) .  
Using (4) and (5) in (18) and (19), this phase rotation comes out as 

The expression (22) is quite similar to the one of ‘Thomas precession’ as given by [6, 
equation (37a) l .  In fact, changing its notation k into k = 1/K, the ‘Thomas precession’ 
E is defined by 

-2( 1 + K cos 0 ) K  sin e 
(1  + K cos 0)’- K 2  sin2 0 

tan E = 

which is to be compared with (22). Let us, however, underline the following point. 
Einstein’s composition law for parallel velocities ( 2 )  is commutative; the Thomas 
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precession appears only when the velocities are not parallel. In the case of multilayers, 
the ‘phase precession’ already appears in ( 1 )  because of the complex character of the 
reflection coefficients. 

(b) The phase rotation [ R I ;  R,] respects the binary operation ‘@’. 

( R I B R A R I ;  RzI=(Ri[Ri; R ~ I ) @ ( R z [ R I ;  R d .  (24) 

RiR,=Rt[R,; RzI-’[R,; R z I R I = R I [ R I [ R I ; R I I R ~ .  ’ (25) 

This can be shown by using ( 1 )  and by noting that in the denominator of equation 
(1) we can write 

( c )  The composition law of amplitudes is a right and left weak-associative law 
d e h e d  by 

To demonstrate (26) note that (16) can be written 

so that we successively get from (28) 

R,@(RzORJ = ( ( & @ R i ) @ R d R i ;  Rz1 
=(&@Ri)[Ri;  R J Q R ~ [ R I ;  Rz1 
= ( R , @ R d @ U R , ;  R21 (29) 

which establishes the validity of (26). (We have used equations (1) and (21) in the 
first equality of (29), equation (24) in the second one and again equation (21) in the 
last equality.) 

In the same way, by changing R3 into R,[RI; R2]-’ in (26) and by noting that 
[ R I ;  RJ-’ =[R2;  R I ]  (see (20)) we obtain (27). 

( d )  Using the same notation as in [61, we can sum up the group-like properties 
underlying the set of all complex amplitudes in stratified planar structures. Denoting 
A the set of complex amplitudes of the electromagnetic field in stratified planar 
structures, we have for all R I ,  Rz,  R 3 e A  (W is used for the weakly associative- 
commutative groupoid): 

W1 R,OR,EA closure property 

W2a R , @ ( R z @ R 3 ) = ( R 1 0 R Z ) @ ( R 3 [ R I ;  R2])  right weak associative law 

W2b (Ri@R2)@R3 = Rl@(RZ@R3[Rz; R I ] )  left weak associative law 

W3 (RiOR2) (R,@ Ri)[Rt; RJ weak commutative law 

W4 OQRI=RIOO=R1 existence of an identity element 

W5 (-RI)@ Ri = RI@(-Ri) = O  existence of inverse. 

Note that axiom W1 asserts that the group-like operation 8 is closed in A, that is, 
the composition RiQRj of any two elements of A itself belongs to A. W4 and WS are 
straightforward from (1 ) .  
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Equations (Wl)-(W5) exhibit the basic properties of a weakly associative-commu- 
tative groupoid with the group operation given by the composition of amplitudes (1). 
Reference [6] suggests such a structure be called a gyrogroup. 

To these five relations let us add (or recall) some useful properties of the 'Thomas 
phase rotation' 

W6 [Rl;R2]-1=[RZ; RI] 

w7 [Rt;R,]=l  when R , O R j = R j O R ,  

W8 

W9 (R,ORz)[R,,R,]=Ri[R,; RjlORz[Ri;Rjl 
[RI[&; RjI; Rz[Rz, R,Il=[R,; RzI 

"10 [RiORz; &]=[RI;  Rz1 loop property. 

W6 and W9 correspond to (20) and (24) respectively. W7 follows from (20). 
In order to demonstrate W8 we can write, using (20) 

[Ri[R$jl; Rz[R;RjlI 

= e x p j ( p R , [ R , R i l @ R , [ R . R , l -  pRdRcRileR,lRrR,l) 

= expj(q(R,@Rz)[R,R,l - %Ri@RdIR.R,l). (30) 

(31) 

(32) 

Recalling (18) and (19) and noting, to be clearer [ R ; ;  Rj] =exp j4 we obtain 

( R i O R d R 8 j I  = P exPj(pR,eR,+ 4) 
(Rz@RJ[RtRjI = P exPj(rpR,eR, + 4) 

so that the phase term in (30) becomes 

(P(R,mRd[R,R,l- 'P(R>@R,)IR<Ril= ?R@R,-(PR@R,. (33) 
Inserting then (33) into (30) establishes the validity of W8. Note that this result is a 
special case of [4, equation 3.1VI. 

The loop property W10 can easily be shown. Using W3, we obtain 

(RI 0 R z ) 0  Rz (R20 (RE 0 Rz))[Ri 0 Rz ; Rz]. (34) 
Using successively W3 in the first Line, W6 and W9 in the second line and W2a in the 
last line, the expression for ( R , 0 R 2 ) 0 R 3  can also be written 

( R i B R d 0 & =  ( ( R z O R J [ R , ;  Rz1)ORz 

=((RzOR,)ORz[Rz; R,I)[Ri; Rz1 

=(RzQ(Ri@Rz))CRi; &I. (35) 
Comparison of the right-hand side of (34) and (35) establishes the validity of WIO. 

4. Calculation of partial reflection coefficients from a knowledge of the others 

The group-like properties (Wl)-(W5) show that the set of all complex amplitudes of 
the electromagnetic field in stratified planar structures forms a 'weakly associative- 
commutative groupoid' with the composition law 0. The knowledge of this gyrogroup 
permits deduction of any partial reflection coefficient ( R ,  or $?3ci,,,,,.,n) from a knowledge 
of others. 
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Performing such calculations needs to solve the basic equation 

B(r,2)= R ,  O R ,  (36) 

for R I  or R 2 .  
( a )  Soloinn (36) for  Rz.  To solve (36) for R2 can easily be done. Composing (36)  

so that 

9?(1,2)= R I @ &  Rz= ( - R ~ @ % I J ) .  (38) 

( b )  Solving (36) for R , .  To solve (36)  for R I  can be done in the same way. 
Multiplying (36)  by [ R 2 ;  R I ]  and using W 3  gives 

%1.2)[R2; R I ]  =R2@ R I .  (39) 

R I  =( -Rd@(%,z ) IRz ;  R I ] ) .  (40) 

The use of (37) then leads to 

5. Conclusion and discussion 

The study of reflection of light by stratified planar structures leads to apriori unsuspec- 
ted results. 

The first result is that the reflection coeEcient of any number of interfaces can be 
obtained directly by using a complex generalization of Einstein's addition law for 
parallel velocities. As explained in [ l ]  this provides a useful mathematical tool in 
optics and in quantum theory (multiple quantum wells). Let us undetline that the 
composition law of amplitudes may avoid some of the possible divergences which 
appear when adding probability amplitudes. Because of this, it may appear as a more 
natural 'addition law' of probability amplitudes. 

The second result is that the set of all the complex amplitudes in stratified planar 
media form a weakly associative-distributive groupoid (a gyrogroup) with the composi- 
tion law 0. This result is all the more unsuspected, because such an abstract mathemati- 
cal structure, although discovered in 1965 by Karzel [ 7 ] ,  onty found its first concrete 
application three years ago when Ungar [Z-61 showed that the set of all relativistically 
admissible velocities form a gyrogroup. Our present result constitutes another concrete 
example of this mathematical structure. The appearance of the same abstract structure 
in two different fields of physics becomes clearer when we note that reflection coefficients 
cannot exceed unity, exactly as velocities cannot exceed the speed of light. 
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